微納米氣泡發(fā)生裝置主要由發(fā)生裝置、微納米曝氣頭和連接管組成。由曝氣頭根據(jù)循環(huán)泵充壓。在離心作用下,使其內(nèi)部產(chǎn)生負(fù)壓區(qū),氣體根據(jù)進(jìn)氣口進(jìn)入負(fù)壓區(qū),在罐體內(nèi)部分為附近的液體帶和核心汽體帶,由高速運(yùn)行的氣石排氣部下氣體勻稱(chēng)切成直徑5~30|^m的微納米氣泡。由于氣泡微妙,不會(huì)受到水中氣體溶解的危害,不會(huì)受到溫度、工作壓力等外部標(biāo)準(zhǔn)的限制,可長(zhǎng)期停留在污水處理中,具有的氣浮機(jī)實(shí)際效果。
改變微納米曝氣器的通氣量,隨空氣流量的增加,氧傳質(zhì)系數(shù)(Km)逐漸增大。標(biāo)準(zhǔn)氧傳質(zhì)效率(SOTE)隨曝氣量的增大而降低。結(jié)果表明,水溫度對(duì)KLa和SOTE均有顯著影響,隨溫度升高,PH升高先降后升,在pH=7.2時(shí)達(dá)到小。隨著NHQ的增加,曝氣組比例降低,且隨濁度增加而增加。SOTE值隨溫度的升高而增大,與微孔曝氣組的趨勢(shì)一致,但其值小于微納米曝氣組。與SOTE相比,微納米曝氣比SOTE對(duì)通氣量的變化更為敏感。
微米級(jí)曝氣在日本的應(yīng)用較早,不僅用于工業(yè)廢水、河流治理,還用于養(yǎng)殖.畜牧.食品工業(yè)等行業(yè),在河道及湖泊凈化等方面的研究與應(yīng)用,已有70多個(gè)研究和應(yīng)用案例。2008年,Shaip公司將微納米曝氣技術(shù)與微生物技術(shù)相結(jié)合,處理一家日流量在200m3左右的污水廠,取得了良好的效果,使TN去除率達(dá)到90%以上。
我國(guó)對(duì)微納米曝氣技術(shù)的研究起步較晚,但隨著其技術(shù)交流和應(yīng)用的不斷開(kāi)放,微納米級(jí)曝氣已逐漸應(yīng)用于國(guó)內(nèi)一些項(xiàng)目,并取得了良好的治理效果。
利用微納米曝氣技術(shù),在廣州白云湖水質(zhì)改造工程中,采用微納米曝氣技術(shù),使湖的上游進(jìn)水水質(zhì)得到明顯改善,曝氣裝置對(duì)水體的溶氧改善效果良好,曝氣地點(diǎn)下游水體的溶氧狀況有很大改善,整個(gè)下游水體DO提高3Mmg/L,各水質(zhì)指標(biāo)均有所提高,相關(guān)研究表明,泡的大小與停留時(shí)間成正比"。范海濤“J”等研究發(fā)現(xiàn),微孔曝氣也可以產(chǎn)生較小的氣泡,但在氣泡上升過(guò)程中可能發(fā)生合并,使得氣泡變大,從而間接降低了氣泡比表面積,從而使比表面積變小,從而受到浮力的影響,使水泡更快地排出水面。減少了氣泡在水中的停留時(shí)間,對(duì)氣液氧傳質(zhì)不利。
曝氣技術(shù)的相關(guān)科學(xué)研究在已經(jīng)進(jìn)行了40多年,投資小,效果好。5o曝氣技術(shù)廣泛應(yīng)用于的水污染治理中,作為水質(zhì)原點(diǎn)的修復(fù)技術(shù)。根據(jù)缺乏自凈能力的水污染治理,曝氣加氧可以修復(fù)生態(tài)系統(tǒng)和水質(zhì)凈化6o溶氧進(jìn)入水質(zhì),可以氧化發(fā)臭化學(xué)物質(zhì),合理緩解或減少黑臭。水質(zhì)中溶解氧水平的提高可以鈍化處理污泥,抑制污泥中高錳酸鹽指數(shù)和磷的釋放,空氣氧化或溶解表面污泥中的恢復(fù)化合物,從而在表面堆積物表面產(chǎn)生以兼性細(xì)菌為主導(dǎo)的自然環(huán)境,促進(jìn)好氧細(xì)菌的繁殖,抑制厭氧發(fā)酵微生物菌種和好氧溶解水環(huán)境中的有機(jī)化合物。曝氣復(fù)氧了水環(huán)境中有氧的自然環(huán)境,提高了水質(zhì)中細(xì)菌的數(shù)量和活力,從而促進(jìn)了微生物菌種對(duì)受損成分的攝入,減輕了環(huán)境污染負(fù)荷,有利于建立細(xì)菌和藻類(lèi)相互依存管理體系7o。
微納米曝氣組成微生物菌種技術(shù)實(shí)施三年后,改善了水利樞紐的各項(xiàng)水質(zhì)指標(biāo),對(duì)碳、氮、磷的環(huán)境污染有很強(qiáng)的減少作用。水質(zhì)總磷遠(yuǎn)低于高錳酸鹽指數(shù),促進(jìn)了水氮/磷比的提高,有利于藍(lán)藻的減少。微納米曝氣融合微生物菌種強(qiáng)化技術(shù)有效應(yīng)用于恢復(fù)水利樞紐水體富營(yíng)養(yǎng)化水質(zhì),本實(shí)驗(yàn)科學(xué)研究結(jié)果為水體富營(yíng)養(yǎng)化水利樞紐水體改善提供參考。
微納米曝氣組成微生物菌種技術(shù)對(duì)水利樞紐堆積物的改善作用??茖W(xué)研究結(jié)果表明,曝氣區(qū)S3的相對(duì)性比附近非曝氣區(qū)S2和S4的TP降低了11.6%和2.7%,曝氣區(qū)S5的相對(duì)性比非曝氣區(qū)S4的TP降低了32%。S3.S5和S6在曝氣危害地區(qū)的相對(duì)性分別為23.0%.18.0%.10.3%。S3.S5和S6在曝氣危害地區(qū)的相對(duì)性分別為22.4%.5.5%.3.8%。積聚物微生物菌種共檢測(cè)22.113屬,曝氣前后對(duì)比,積聚物中有益菌變菌門(mén)成分增加26.42%,厚壁菌門(mén)成分增加5.25%,而標(biāo)有水體富營(yíng)養(yǎng)化的綠彎菌門(mén)成分減少9.51%,酸鏈球菌門(mén)成分減少5.82%,球菌門(mén)成分減少8.16%,其他類(lèi)別成分彈性系數(shù)較低。
微納米曝氣組成微生物菌種技術(shù)改善水利樞紐水質(zhì)??茖W(xué)研究結(jié)果表明,在實(shí)施微納米曝氣的幾年內(nèi),曝氣區(qū)表面溶氧平均值為9.5mg/L,而非曝氣區(qū)為8.7mg/L。在底層水質(zhì)中,曝氣區(qū)平均值為8.8mg/L,非曝氣區(qū)平均值為7.8mg/Lo。2018年溶氧平均值為8.9mg/L,2019年升至9.6mg/L。水利樞紐pH值變化區(qū)域?yàn)?.04~8.61o,水質(zhì)清晰度從上下游水質(zhì)清晰度不到1m,再到曝氣區(qū)域?yàn)?m1.5m。2018年清晰度平均值為1m,2019年清晰度平均值提高到1.1m。水利樞紐上下游非曝氣區(qū)高錳酸鹽指數(shù)均為1.06mg/L;曝氣區(qū)二期和中下游高錳酸鹽指數(shù)均為0.92mg/L;2018年曝氣區(qū)一、三期高錳酸鹽指數(shù)均為0.88mg/Lo,2019年降至0.94mg/L。水利樞紐上下游非曝氣區(qū)總磷值為0.57mg/L,曝氣區(qū)二期和中下游總磷值為0.039mg/L;曝氣區(qū)一、三期總磷值為0.033mg/L。2018年總磷濃度值平均值為0.044mg/L,2019年總磷濃度值平均值降至0.042mg/Lo水利樞紐上下游非曝氣區(qū)可溶活力磷平均值為0.010mg/L;曝氣區(qū)二期和中下游可溶活力磷平均值為0.008mg/L;2018年曝氣區(qū)一、三期可溶活力磷平均值為0.007mg/L,2019年SRP平均值為0.008mg/L。水利樞紐上下游非曝氣區(qū)葉綠素a均值為8.27ugL;曝氣區(qū)二期和中下游葉綠素a均值為6.17ug/L;曝氣區(qū)一、三期葉綠素a均值為4.30ug/L。2018年葉綠素a總平均值為6.45ug/L,2019年總平均值降至6.04ug/L。曝氣區(qū)二期藻類(lèi)總產(chǎn)量減少率為22.1%;曝氣區(qū)一、三期藻類(lèi)總產(chǎn)量減少率為34.5%,春季藻類(lèi)總產(chǎn)量減少率為27.1%;夏季藻類(lèi)總產(chǎn)量減少率為31.9%;冬季藻類(lèi)總產(chǎn)量減少率為25.9%。夏季藻類(lèi)植物總產(chǎn)量較高,因此減少率也較高,其次是春季和冬季。藻類(lèi)總產(chǎn)量的平均減少率為28.3%,藍(lán)藻的平均減少率為33.9%,藻類(lèi)的平均減少率為34.4%,硅藻泥的平均減少率為18.7%o微納米曝氣成分。微生物菌種技術(shù)對(duì)不同類(lèi)型的藻類(lèi)有一定的減少作用。2018年藻類(lèi)總進(jìn)化率平均為7.2x106cels/L,2019年藻類(lèi)總進(jìn)化率平均降至7.1*106cels/L。
微納米氣泡的關(guān)鍵特點(diǎn)如下:
(I)
微納米氣泡體積比一般氣泡小很多,水的浮力也小,所以上升緩慢,納米氣泡在上升過(guò)程中會(huì)繼續(xù)收攏,終在水中融化消退。汪敏剛等I38對(duì)微納米氣泡為人眼所見(jiàn)的乳白色出現(xiàn)時(shí)間(關(guān)鍵以微米氣泡為主)進(jìn)行了反復(fù)準(zhǔn)確測(cè)量求平均值的科學(xué)研究,測(cè)量數(shù)據(jù)顯示微納米氣泡在水中的懸浮時(shí)間為5分鐘左右。
(I)
微納米氣泡頁(yè)面會(huì)吸引帶負(fù)電的正離子(如OH-),產(chǎn)生表面正電荷的正離子層;空氣負(fù)離子會(huì)吸引帶正電的正離子(如H+),在表面正電荷的正離子層周?chē)a(chǎn)生正電荷,這也是微納米氣泡頁(yè)面的雙電層結(jié)構(gòu)39,如圖0-2所示。雙電層促進(jìn)氣泡之間的排斥,使氣泡無(wú)法相互結(jié)合,氣泡在溶液中的均勻分布40o雙電層正電荷引起的電位差。Z電位差越高,吸附功能越高。