改變微納米曝氣器的通氣量,隨空氣流量的增加,氧傳質(zhì)系數(shù)(Km)逐漸增大。標準氧傳質(zhì)效率(SOTE)隨曝氣量的增大而降低。結(jié)果表明,水溫度對KLa和SOTE均有顯著影響,隨溫度升高,PH升高先降后升,在pH=7.2時達到小。隨著NHQ的增加,曝氣組比例降低,且隨濁度增加而增加。SOTE值隨溫度的升高而增大,與微孔曝氣組的趨勢一致,但其值小于微納米曝氣組。與SOTE相比,微納米曝氣比SOTE對通氣量的變化更為敏感。
天津市水文局、天津市水文局、天津市水文局、天津市水文局、天津市水文局、天津市水文局等單位利用微納曝氣裝置和射流曝氣裝置,對天津水利部城市水環(huán)境改善示范基地進行了通氣改造,該工程占地面積為320000平方米。增加水體氧含量,克服了冬季運行技術難題,主要指標達到地表水IV類標準。
郝明偉[8°]主要對水中微納米氣泡的運動規(guī)律和沉降機理進行了研究,并對日本微型納米曝氣裝置氣泡發(fā)生器結(jié)構(gòu)原理進行了研究。并對某河流曝氣水質(zhì)進行了改進試驗,認為微納米級曝氣是一種較好的改善水體水質(zhì)環(huán)境的技術。
除用于湖泊.河道的治理外,國內(nèi)外很多學者也將微納米曝氣在其它領域進行相關研究。通過對一靜態(tài)旋流微氣泡浮選柱的使用條件的優(yōu)化,并對含含水的廢水進行了處理,結(jié)果表明,微泡懸浮柱對含油廢水的去除率達到90%以上。對于生物凈化作用,米歇森等網(wǎng)對用微生物與微納米曝氣法混合后,注入土壤間隙,以降解土壤中二甲苯。試驗結(jié)果表明,微納米粒曝氣可以提高微生物的活性,經(jīng)處理后二甲苯濃度基本被去除,微納米泡在土壤中維持較長時間,菌株的作用也更加持久。Hotta等利用微米級曝氣法在海洋環(huán)境中進行了海體底泥污染試驗。研究結(jié)果表明,微納米泡不僅能有效地消除底泥中的污染物,而且能增強污泥中的細菌活性,提高污泥的持續(xù)污染能力。將微泡氣浮與普通氣浮工藝相比較,采用微泡氣浮和普通氣浮工藝,對含油餐飲廢水進行預處理,在相似條件下,微泡氣浮技術具有較好的氣浮性能和較高的去除率??梢?,微納米粒曝氣在曝氣技術上有一定的性,但微納米曝氣技術在實際應用中要把水體和氣體混在一起才能曝氣,怎樣才能更好地推廣微納曝氣技術,也是當前研究的熱點。
曝氣技術的相關科學研究在已經(jīng)進行了40多年,投資小,效果好。5o曝氣技術廣泛應用于的水污染治理中,作為水質(zhì)原點的修復技術。根據(jù)缺乏自凈能力的水污染治理,曝氣加氧可以修復生態(tài)系統(tǒng)和水質(zhì)凈化6o溶氧進入水質(zhì),可以氧化發(fā)臭化學物質(zhì),合理緩解或減少黑臭。水質(zhì)中溶解氧水平的提高可以鈍化處理污泥,抑制污泥中高錳酸鹽指數(shù)和磷的釋放,空氣氧化或溶解表面污泥中的恢復化合物,從而在表面堆積物表面產(chǎn)生以兼性細菌為主導的自然環(huán)境,促進好氧細菌的繁殖,抑制厭氧發(fā)酵微生物菌種和好氧溶解水環(huán)境中的有機化合物。曝氣復氧了水環(huán)境中有氧的自然環(huán)境,提高了水質(zhì)中細菌的數(shù)量和活力,從而促進了微生物菌種對受損成分的攝入,減輕了環(huán)境污染負荷,有利于建立細菌和藻類相互依存管理體系7o。
納米氣泡是指孔徑為0.1.50微m的氣泡,在10微m中稱為micro-bubble,在20世界90時代,日本生物學家開始為水產(chǎn)養(yǎng)殖領域開發(fā)微納米氣泡35。1991年,Ketkar等36對沉淀氣泡技術進行了科學研究,豐富多彩,提高了微納米氣泡的出現(xiàn)方式?,如電解鹽水、充壓融化、切割等37o。
科研人員發(fā)現(xiàn),由于微納米氣泡規(guī)格小的特點,表現(xiàn)出與一般氣泡不同的多種特點,使氣泡在水質(zhì)中的溶解氧更,對浮顆粒的剝離有更好的實際效果,對污染源的分解力。
微納米氣泡的關鍵特點如下:
(I)
微納米氣泡體積比一般氣泡小很多,水的浮力也小,所以上升緩慢,納米氣泡在上升過程中會繼續(xù)收攏,終在水中融化消退。汪敏剛等I38對微納米氣泡為人眼所見的乳白色出現(xiàn)時間(關鍵以微米氣泡為主)進行了反復準確測量求平均值的科學研究,測量數(shù)據(jù)顯示微納米氣泡在水中的懸浮時間為5分鐘左右。
(I)
微納米氣泡頁面會吸引帶負電的正離子(如OH-),產(chǎn)生表面正電荷的正離子層;空氣負離子會吸引帶正電的正離子(如H+),在表面正電荷的正離子層周圍產(chǎn)生正電荷,這也是微納米氣泡頁面的雙電層結(jié)構(gòu)39,如圖0-2所示。雙電層促進氣泡之間的排斥,使氣泡無法相互結(jié)合,氣泡在溶液中的均勻分布40o雙電層正電荷引起的電位差。Z電位差越高,吸附功能越高。