我國水源明顯不足,水環(huán)境污染問題極為。為了更好地實(shí)現(xiàn)人類社會(huì)的可持續(xù)發(fā)展觀,完成人與自然的和諧發(fā)展趨勢,破壞水質(zhì)恢復(fù)的分析和實(shí)踐活動(dòng)成為當(dāng)今的熱門話題。目前,鑒于湖長制環(huán)境污染日益嚴(yán)重,水質(zhì)曝氣作為一種投資少、效果好的項(xiàng)目,被廣泛采用。
現(xiàn)階段,我國一般?選用的曝氣機(jī)設(shè)備,不能引起微納米級(jí)細(xì)微氣泡,溶氧率低,能耗高。微納米氣泡發(fā)生裝置可生產(chǎn)直徑在50|mm和數(shù)十納米(nm)之間的細(xì)微氣泡,可快速溶解在水中,進(jìn)一步提高溶解氧的率。該技術(shù)作為一種新型水質(zhì)曝氣技術(shù),在水環(huán)境中具有極其廣闊的市場潛力。
微納米氣泡發(fā)生裝置主要由發(fā)生裝置、微納米曝氣頭和連接管組成。由曝氣頭根據(jù)循環(huán)泵充壓。在離心作用下,使其內(nèi)部產(chǎn)生負(fù)壓區(qū),氣體根據(jù)進(jìn)氣口進(jìn)入負(fù)壓區(qū),在罐體內(nèi)部分為附近的液體帶和核心汽體帶,由高速運(yùn)行的氣石排氣部下氣體勻稱切成直徑5~30|^m的微納米氣泡。由于氣泡微妙,不會(huì)受到水中氣體溶解的危害,不會(huì)受到溫度、工作壓力等外部標(biāo)準(zhǔn)的限制,可長期停留在污水處理中,具有的氣浮機(jī)實(shí)際效果。
氧在水質(zhì)中的傳遞是通過氣體和廢水中的O2濃度梯度將O2從致密氣體遷移到低密度廢水中,因此O2濃度梯度和接觸范圍確定了曝氣的實(shí)際效果。在O2濃度梯度不變的標(biāo)準(zhǔn)下,氣水接觸總面積是決定曝氣實(shí)際效果的主要因素。
微納米氣泡技術(shù)合理解決了水質(zhì)中氣泡接觸總面積的問題。根本原因是微納米氣泡的面積可以合理擴(kuò)大。例如,0.1cm的大氣泡可以分散成100nm的微氣泡,其面積可以擴(kuò)大1萬倍,從而進(jìn)一步提高溶解氧的率。同時(shí),由于氣泡細(xì)小,氣浮機(jī)性能,可長期停留在污水處理中,從而達(dá)到良好曝氣實(shí)際效果的目的。
由于微納米氣泡發(fā)生裝置的原理和氣泡尺寸與基本曝氣設(shè)備有很大不同,因此該設(shè)備形成的微納米氣泡具有以下特性。
水解狀況:水中汽體的溶解性受壓力危害大于(1),但電解質(zhì)溶液的離子化水可以在融入的微納米氣泡表面產(chǎn)生兩層電離子,并隨著面積的不斷減小而大幅收攏,可以抑制氣泡中汽體的釋放,進(jìn)一步提高溶解度。
(2)超聲波:微納米氣泡因能量高而開裂,具有很強(qiáng)的作用。
(3)通電性:微納米氣泡表面含有負(fù)電,很難將氣泡融為一體,在水質(zhì)中會(huì)產(chǎn)生非常茂密細(xì)致的氣泡,不容易像基本氣泡一樣結(jié)合膨脹開裂。微納米氣泡的表面電位差一般為-30~-50mV,能吸收水質(zhì)中含有正電荷的化學(xué)物質(zhì)。利用表面正電荷對(duì)水質(zhì)顆粒的吸附,可以固定和分離水質(zhì)中的有機(jī)化學(xué)懸浮固體。因此,該技術(shù)在提高溶氧的同時(shí),也具有一定的水處理實(shí)際效果。
(4)停留性:微納米氣泡在水質(zhì)上升得很慢,像香煙一樣彌漫在水中。比如10prn氣泡以100m/s的速度升高,在水質(zhì)上升高1m需要3小時(shí),所以微納米氣泡會(huì)在水中停留很長時(shí)間。這一特點(diǎn)也是其融解效率相對(duì)較高的關(guān)鍵。這種停留的形成不僅與氣泡細(xì)水的浮力降低有關(guān),還與其電荷有關(guān)。如果選擇電極進(jìn)行觀察,隨著電級(jí)的變化,可以看到小氣泡的正負(fù)極健身運(yùn)動(dòng)和Z型的緩慢上升。
微米級(jí)曝氣在日本的應(yīng)用較早,不僅用于工業(yè)廢水、河流治理,還用于養(yǎng)殖.畜牧.食品工業(yè)等行業(yè),在河道及湖泊凈化等方面的研究與應(yīng)用,已有70多個(gè)研究和應(yīng)用案例。2008年,Shaip公司將微納米曝氣技術(shù)與微生物技術(shù)相結(jié)合,處理一家日流量在200m3左右的污水廠,取得了良好的效果,使TN去除率達(dá)到90%以上。
我國對(duì)微納米曝氣技術(shù)的研究起步較晚,但隨著其技術(shù)交流和應(yīng)用的不斷開放,微納米級(jí)曝氣已逐漸應(yīng)用于國內(nèi)一些項(xiàng)目,并取得了良好的治理效果。
除用于湖泊.河道的治理外,國內(nèi)外很多學(xué)者也將微納米曝氣在其它領(lǐng)域進(jìn)行相關(guān)研究。通過對(duì)一靜態(tài)旋流微氣泡浮選柱的使用條件的優(yōu)化,并對(duì)含含水的廢水進(jìn)行了處理,結(jié)果表明,微泡懸浮柱對(duì)含油廢水的去除率達(dá)到90%以上。對(duì)于生物凈化作用,米歇森等網(wǎng)對(duì)用微生物與微納米曝氣法混合后,注入土壤間隙,以降解土壤中二甲苯。試驗(yàn)結(jié)果表明,微納米粒曝氣可以提高微生物的活性,經(jīng)處理后二甲苯濃度基本被去除,微納米泡在土壤中維持較長時(shí)間,菌株的作用也更加持久。Hotta等利用微米級(jí)曝氣法在海洋環(huán)境中進(jìn)行了海體底泥污染試驗(yàn)。研究結(jié)果表明,微納米泡不僅能有效地消除底泥中的污染物,而且能增強(qiáng)污泥中的細(xì)菌活性,提高污泥的持續(xù)污染能力。將微泡氣浮與普通氣浮工藝相比較,采用微泡氣浮和普通氣浮工藝,對(duì)含油餐飲廢水進(jìn)行預(yù)處理,在相似條件下,微泡氣浮技術(shù)具有較好的氣浮性能和較高的去除率??梢?,微納米粒曝氣在曝氣技術(shù)上有一定的性,但微納米曝氣技術(shù)在實(shí)際應(yīng)用中要把水體和氣體混在一起才能曝氣,怎樣才能更好地推廣微納曝氣技術(shù),也是當(dāng)前研究的熱點(diǎn)。
曝氣技術(shù)的相關(guān)科學(xué)研究在已經(jīng)進(jìn)行了40多年,投資小,效果好。5o曝氣技術(shù)廣泛應(yīng)用于的水污染治理中,作為水質(zhì)原點(diǎn)的修復(fù)技術(shù)。根據(jù)缺乏自凈能力的水污染治理,曝氣加氧可以修復(fù)生態(tài)系統(tǒng)和水質(zhì)凈化6o溶氧進(jìn)入水質(zhì),可以氧化發(fā)臭化學(xué)物質(zhì),合理緩解或減少黑臭。水質(zhì)中溶解氧水平的提高可以鈍化處理污泥,抑制污泥中高錳酸鹽指數(shù)和磷的釋放,空氣氧化或溶解表面污泥中的恢復(fù)化合物,從而在表面堆積物表面產(chǎn)生以兼性細(xì)菌為主導(dǎo)的自然環(huán)境,促進(jìn)好氧細(xì)菌的繁殖,抑制厭氧發(fā)酵微生物菌種和好氧溶解水環(huán)境中的有機(jī)化合物。曝氣復(fù)氧了水環(huán)境中有氧的自然環(huán)境,提高了水質(zhì)中細(xì)菌的數(shù)量和活力,從而促進(jìn)了微生物菌種對(duì)受損成分的攝入,減輕了環(huán)境污染負(fù)荷,有利于建立細(xì)菌和藻類相互依存管理體系7o。
新開發(fā)的微納米曝氣充氧設(shè)備是指比較其他微納米曝氣充氧設(shè)備的優(yōu)點(diǎn)??茖W(xué)研究新型微納米曝氣充氧設(shè)備的功能測試,獲得新型微納米曝氣充氧設(shè)備的性能參數(shù),并與市場上曝氣設(shè)備的技術(shù)指標(biāo)進(jìn)行比較。對(duì)新型微納米曝氣充氧設(shè)備的河段進(jìn)行模擬計(jì)算,獲得內(nèi)部河段的工作壓力、流速、相同的實(shí)際標(biāo)值變化,并分析其原因,為事后的改進(jìn)提供基本的理論支持點(diǎn)。模擬計(jì)算可以降低經(jīng)濟(jì)成本,節(jié)約原材料,穩(wěn)定性大。利用新型微納米曝氣充氧設(shè)備和曝氣盤曝氣設(shè)備,對(duì)水污染控制進(jìn)行實(shí)驗(yàn)科學(xué)研究,比較兩種設(shè)備對(duì)污染物的污泥負(fù)荷,分析水質(zhì)中細(xì)菌的變化。后,根據(jù)基本建設(shè)示范項(xiàng)目,分析示范項(xiàng)目中設(shè)備系統(tǒng)軟件的建設(shè)成本,比較其他水污染處理方法的成本,確保新型微納米曝氣充氧設(shè)備的優(yōu)勢。后對(duì)試驗(yàn)探究的效果進(jìn)行總結(jié)分析,對(duì)下一步的分析進(jìn)行展望。新型微納米曝氣設(shè)備與SBR系統(tǒng)軟件緊密結(jié)合仿真模擬解決水污染控制,不僅充分發(fā)揮微納米曝氣設(shè)備激光切割優(yōu)化和高溶解氧優(yōu)勢,還具有SBR系統(tǒng)軟件間歇曝氣降低運(yùn)行成本,實(shí)驗(yàn)效果,為曝氣設(shè)備的應(yīng)用和推廣提供基本理論支持。
微納米曝氣組成微生物菌種技術(shù)改善水利樞紐水質(zhì)??茖W(xué)研究結(jié)果表明,在實(shí)施微納米曝氣的幾年內(nèi),曝氣區(qū)表面溶氧平均值為9.5mg/L,而非曝氣區(qū)為8.7mg/L。在底層水質(zhì)中,曝氣區(qū)平均值為8.8mg/L,非曝氣區(qū)平均值為7.8mg/Lo。2018年溶氧平均值為8.9mg/L,2019年升至9.6mg/L。水利樞紐pH值變化區(qū)域?yàn)?.04~8.61o,水質(zhì)清晰度從上下游水質(zhì)清晰度不到1m,再到曝氣區(qū)域?yàn)?m1.5m。2018年清晰度平均值為1m,2019年清晰度平均值提高到1.1m。水利樞紐上下游非曝氣區(qū)高錳酸鹽指數(shù)均為1.06mg/L;曝氣區(qū)二期和中下游高錳酸鹽指數(shù)均為0.92mg/L;2018年曝氣區(qū)一、三期高錳酸鹽指數(shù)均為0.88mg/Lo,2019年降至0.94mg/L。水利樞紐上下游非曝氣區(qū)總磷值為0.57mg/L,曝氣區(qū)二期和中下游總磷值為0.039mg/L;曝氣區(qū)一、三期總磷值為0.033mg/L。2018年總磷濃度值平均值為0.044mg/L,2019年總磷濃度值平均值降至0.042mg/Lo水利樞紐上下游非曝氣區(qū)可溶活力磷平均值為0.010mg/L;曝氣區(qū)二期和中下游可溶活力磷平均值為0.008mg/L;2018年曝氣區(qū)一、三期可溶活力磷平均值為0.007mg/L,2019年SRP平均值為0.008mg/L。水利樞紐上下游非曝氣區(qū)葉綠素a均值為8.27ugL;曝氣區(qū)二期和中下游葉綠素a均值為6.17ug/L;曝氣區(qū)一、三期葉綠素a均值為4.30ug/L。2018年葉綠素a總平均值為6.45ug/L,2019年總平均值降至6.04ug/L。曝氣區(qū)二期藻類總產(chǎn)量減少率為22.1%;曝氣區(qū)一、三期藻類總產(chǎn)量減少率為34.5%,春季藻類總產(chǎn)量減少率為27.1%;夏季藻類總產(chǎn)量減少率為31.9%;冬季藻類總產(chǎn)量減少率為25.9%。夏季藻類植物總產(chǎn)量較高,因此減少率也較高,其次是春季和冬季。藻類總產(chǎn)量的平均減少率為28.3%,藍(lán)藻的平均減少率為33.9%,藻類的平均減少率為34.4%,硅藻泥的平均減少率為18.7%o微納米曝氣成分。微生物菌種技術(shù)對(duì)不同類型的藻類有一定的減少作用。2018年藻類總進(jìn)化率平均為7.2x106cels/L,2019年藻類總進(jìn)化率平均降至7.1*106cels/L。
還原性強(qiáng)
微納米泡破裂后,由更高濃度的正離子氣-水分子聚集的機(jī)械能在一瞬間釋放出來,使H2O溶解形成具有強(qiáng)氧化性的羥基自由基(·0H)I3"]。Zhang等四在衰減系數(shù)全反射傅里葉變換紅外光譜技術(shù)(ATR-IR)的基礎(chǔ)上發(fā)現(xiàn),一旦破裂,高能的納米氣泡破裂,在水中生成大量的羥基自由基(2.07V),具有很強(qiáng)的氧化能力(2.07V),能夠氧化分解有機(jī)物,凈化處理水體。
(VI)的氧對(duì)流換熱。
隨著微納米泡直徑的減小,氣泡的比表面積繼續(xù)增大,界面張力促使內(nèi)部標(biāo)準(zhǔn)壓力不斷增大,使得大量的O2按照氣-水相界面融入水相培土壤。由于氣泡存在于水中的時(shí)間較長,氣體與藥液接觸的時(shí)間越長,而且氣泡堆積密度越大,促使氣體接觸液面的距離也隨之?dāng)U大,O2的使用率因此提升"I。