改變微納米曝氣器的通氣量,隨空氣流量的增加,氧傳質系數(shù)(Km)逐漸增大。標準氧傳質效率(SOTE)隨曝氣量的增大而降低。結果表明,水溫度對KLa和SOTE均有顯著影響,隨溫度升高,PH升高先降后升,在pH=7.2時達到小。隨著NHQ的增加,曝氣組比例降低,且隨濁度增加而增加。SOTE值隨溫度的升高而增大,與微孔曝氣組的趨勢一致,但其值小于微納米曝氣組。與SOTE相比,微納米曝氣比SOTE對通氣量的變化更為敏感。
微納米曝氣組成微生物菌種技術實施三年后,改善了水利樞紐的各項水質指標,對碳、氮、磷的環(huán)境污染有很強的減少作用。水質總磷遠低于高錳酸鹽指數(shù),促進了水氮/磷比的提高,有利于藍藻的減少。微納米曝氣融合微生物菌種強化技術有效應用于恢復水利樞紐水體富營養(yǎng)化水質,本實驗科學研究結果為水體富營養(yǎng)化水利樞紐水體改善提供參考。
采用微納米氣泡曝氣技術項目進行藻類控制,項目分三期基本建設,總曝氣面積14.5hm2。微納米技術工程噸污水處理費用約為0.02元/m3,合理性優(yōu)良。圍隔實驗期內,圍隔內的溫度范圍為21.5。26.1。隔離試驗結束時,三個微納米曝氣組的溶解氧濃度值在12.4mg/L左右,而空缺對照試驗的溶解氧濃度值為8.7mg/L,與曝氣組誤差較大,達到3.7mg/L,顯示了微納米曝氣的實際充氧效果。曝氣組高錳酸鹽指數(shù)的大污泥負荷來自曝氣生物菌種組,達到50%,比立曝氣組高19.8%。總磷和可溶活力磷的大污泥負荷來自曝氣+鎖磷劑組,各達70.3%和50%。曝氣生物菌種組對葉綠素A的大污泥負荷為70.2%,比立曝氣組增加33.5%,藻類總進化率的大污泥負荷為78.9%,比立曝氣組增加13.9%,藍藻減少率為86.8%。