微納米氣泡發(fā)生裝置主要由發(fā)生裝置、微納米曝氣頭和連接管組成。由曝氣頭根據(jù)循環(huán)泵充壓。在離心作用下,使其內(nèi)部產(chǎn)生負壓區(qū),氣體根據(jù)進氣口進入負壓區(qū),在罐體內(nèi)部分為附近的液體帶和核心汽體帶,由高速運行的氣石排氣部下氣體勻稱切成直徑5~30|^m的微納米氣泡。由于氣泡微妙,不會受到水中氣體溶解的危害,不會受到溫度、工作壓力等外部標準的限制,可長期停留在污水處理中,具有的氣浮機實際效果。
氧在水質(zhì)中的傳遞是通過氣體和廢水中的O2濃度梯度將O2從致密氣體遷移到低密度廢水中,因此O2濃度梯度和接觸范圍確定了曝氣的實際效果。在O2濃度梯度不變的標準下,氣水接觸總面積是決定曝氣實際效果的主要因素。
微納米氣泡技術合理解決了水質(zhì)中氣泡接觸總面積的問題。根本原因是微納米氣泡的面積可以合理擴大。例如,0.1cm的大氣泡可以分散成100nm的微氣泡,其面積可以擴大1萬倍,從而進一步提高溶解氧的率。同時,由于氣泡細小,氣浮機性能,可長期停留在污水處理中,從而達到良好曝氣實際效果的目的。
由于微納米氣泡發(fā)生裝置的原理和氣泡尺寸與基本曝氣設備有很大不同,因此該設備形成的微納米氣泡具有以下特性。
水解狀況:水中汽體的溶解性受壓力危害大于(1),但電解質(zhì)溶液的離子化水可以在融入的微納米氣泡表面產(chǎn)生兩層電離子,并隨著面積的不斷減小而大幅收攏,可以抑制氣泡中汽體的釋放,進一步提高溶解度。
(2)超聲波:微納米氣泡因能量高而開裂,具有很強的作用。
(3)通電性:微納米氣泡表面含有負電,很難將氣泡融為一體,在水質(zhì)中會產(chǎn)生非常茂密細致的氣泡,不容易像基本氣泡一樣結合膨脹開裂。微納米氣泡的表面電位差一般為-30~-50mV,能吸收水質(zhì)中含有正電荷的化學物質(zhì)。利用表面正電荷對水質(zhì)顆粒的吸附,可以固定和分離水質(zhì)中的有機化學懸浮固體。因此,該技術在提高溶氧的同時,也具有一定的水處理實際效果。
(4)停留性:微納米氣泡在水質(zhì)上升得很慢,像香煙一樣彌漫在水中。比如10prn氣泡以100m/s的速度升高,在水質(zhì)上升高1m需要3小時,所以微納米氣泡會在水中停留很長時間。這一特點也是其融解效率相對較高的關鍵。這種停留的形成不僅與氣泡細水的浮力降低有關,還與其電荷有關。如果選擇電極進行觀察,隨著電級的變化,可以看到小氣泡的正負極健身運動和Z型的緩慢上升。
微納米曝氣改善水體的主要作用。
溶解氧是清潔水質(zhì)的主要原因之一。高溶解氧有利于溶解水環(huán)境中的各種污染源,使水質(zhì)迅速凈化;相反,溶解氧低,水質(zhì)中的污染物溶解緩慢。微納米曝氣技術對改善水體有以下幾個方面。
(1)去除有機化合物的破壞和黑臭:由于微納米氣泡停留性強,可以帶來更充分的O2。在豐富多彩的好氧細菌標準下,有機化合物的環(huán)境污染指標值COD和BOD顯著降低,黑臭消退。同時,去除了水質(zhì)底部有機化合物溶解引起的甲烷氣體、氯化氫等有害有害物質(zhì)。
(2)降低水質(zhì)營養(yǎng)鹽成分:由于微納米氣泡具有較強的氣浮機性、停留性和擴散性,其升果較弱。水質(zhì)加氧后,可合理抑制河底綠膿桿菌有機溶解的全過程,減少水下氮和磷營養(yǎng)鹽的釋放。
(3)去除藻類藍藻水華:微納米曝氣具有很強的復氧作用,可以改善水生生物的生活條件,進而控制藻類的生長發(fā)育。
(4)提高水綠化和清晰度:環(huán)境污染水質(zhì)中的各種無機物和有機化學懸浮固體、活浮植物和死亡遺骸、大中型水生花渣、溶解生物渣是危害水綠化和透明度的關鍵化學物質(zhì)。微納米曝氣能更合理地促進水生生物的生長發(fā)育,進而降低水土有機質(zhì),顯著提高水質(zhì)清晰度,改善水綠色。
減少污泥內(nèi)源性環(huán)境污染:微納米曝氣充氧后,湖長制(5)底泥表面氧含量增加,好氧微生物菌種主題活動加強。根據(jù)生物排泄的全過程,促進污泥有機化學污染物的溶解,逐步完善無機物化底泥土壤層,阻隔內(nèi)源性環(huán)境污染。
微米級曝氣在日本的應用較早,不僅用于工業(yè)廢水、河流治理,還用于養(yǎng)殖.畜牧.食品工業(yè)等行業(yè),在河道及湖泊凈化等方面的研究與應用,已有70多個研究和應用案例。2008年,Shaip公司將微納米曝氣技術與微生物技術相結合,處理一家日流量在200m3左右的污水廠,取得了良好的效果,使TN去除率達到90%以上。
我國對微納米曝氣技術的研究起步較晚,但隨著其技術交流和應用的不斷開放,微納米級曝氣已逐漸應用于國內(nèi)一些項目,并取得了良好的治理效果。
利用微納米曝氣技術,在廣州白云湖水質(zhì)改造工程中,采用微納米曝氣技術,使湖的上游進水水質(zhì)得到明顯改善,曝氣裝置對水體的溶氧改善效果良好,曝氣地點下游水體的溶氧狀況有很大改善,整個下游水體DO提高3Mmg/L,各水質(zhì)指標均有所提高,相關研究表明,泡的大小與停留時間成正比"。范海濤“J”等研究發(fā)現(xiàn),微孔曝氣也可以產(chǎn)生較小的氣泡,但在氣泡上升過程中可能發(fā)生合并,使得氣泡變大,從而間接降低了氣泡比表面積,從而使比表面積變小,從而受到浮力的影響,使水泡更快地排出水面。減少了氣泡在水中的停留時間,對氣液氧傳質(zhì)不利。
還原性強
微納米泡破裂后,由更高濃度的正離子氣-水分子聚集的機械能在一瞬間釋放出來,使H2O溶解形成具有強氧化性的羥基自由基(·0H)I3"]。Zhang等四在衰減系數(shù)全反射傅里葉變換紅外光譜技術(ATR-IR)的基礎上發(fā)現(xiàn),一旦破裂,高能的納米氣泡破裂,在水中生成大量的羥基自由基(2.07V),具有很強的氧化能力(2.07V),能夠氧化分解有機物,凈化處理水體。
(VI)的氧對流換熱。
隨著微納米泡直徑的減小,氣泡的比表面積繼續(xù)增大,界面張力促使內(nèi)部標準壓力不斷增大,使得大量的O2按照氣-水相界面融入水相培土壤。由于氣泡存在于水中的時間較長,氣體與藥液接觸的時間越長,而且氣泡堆積密度越大,促使氣體接觸液面的距離也隨之擴大,O2的使用率因此提升"I。