我國水源明顯不足,水環(huán)境污染問題極為。為了更好地實(shí)現(xiàn)人類社會的可持續(xù)發(fā)展觀,完成人與自然的和諧發(fā)展趨勢,破壞水質(zhì)恢復(fù)的分析和實(shí)踐活動成為當(dāng)今的熱門話題。目前,鑒于湖長制環(huán)境污染日益嚴(yán)重,水質(zhì)曝氣作為一種投資少、效果好的項(xiàng)目,被廣泛采用。
現(xiàn)階段,我國一般?選用的曝氣機(jī)設(shè)備,不能引起微納米級細(xì)微氣泡,溶氧率低,能耗高。微納米氣泡發(fā)生裝置可生產(chǎn)直徑在50|mm和數(shù)十納米(nm)之間的細(xì)微氣泡,可快速溶解在水中,進(jìn)一步提高溶解氧的率。該技術(shù)作為一種新型水質(zhì)曝氣技術(shù),在水環(huán)境中具有極其廣闊的市場潛力。
微納米氣泡發(fā)生裝置主要由發(fā)生裝置、微納米曝氣頭和連接管組成。由曝氣頭根據(jù)循環(huán)泵充壓。在離心作用下,使其內(nèi)部產(chǎn)生負(fù)壓區(qū),氣體根據(jù)進(jìn)氣口進(jìn)入負(fù)壓區(qū),在罐體內(nèi)部分為附近的液體帶和核心汽體帶,由高速運(yùn)行的氣石排氣部下氣體勻稱切成直徑5~30|^m的微納米氣泡。由于氣泡微妙,不會受到水中氣體溶解的危害,不會受到溫度、工作壓力等外部標(biāo)準(zhǔn)的限制,可長期停留在污水處理中,具有的氣浮機(jī)實(shí)際效果。
改變微納米曝氣器的通氣量,隨空氣流量的增加,氧傳質(zhì)系數(shù)(Km)逐漸增大。標(biāo)準(zhǔn)氧傳質(zhì)效率(SOTE)隨曝氣量的增大而降低。結(jié)果表明,水溫度對KLa和SOTE均有顯著影響,隨溫度升高,PH升高先降后升,在pH=7.2時達(dá)到小。隨著NHQ的增加,曝氣組比例降低,且隨濁度增加而增加。SOTE值隨溫度的升高而增大,與微孔曝氣組的趨勢一致,但其值小于微納米曝氣組。與SOTE相比,微納米曝氣比SOTE對通氣量的變化更為敏感。
天津市水文局、天津市水文局、天津市水文局、天津市水文局、天津市水文局、天津市水文局等單位利用微納曝氣裝置和射流曝氣裝置,對天津水利部城市水環(huán)境改善示范基地進(jìn)行了通氣改造,該工程占地面積為320000平方米。增加水體氧含量,克服了冬季運(yùn)行技術(shù)難題,主要指標(biāo)達(dá)到地表水IV類標(biāo)準(zhǔn)。
郝明偉[8°]主要對水中微納米氣泡的運(yùn)動規(guī)律和沉降機(jī)理進(jìn)行了研究,并對日本微型納米曝氣裝置氣泡發(fā)生器結(jié)構(gòu)原理進(jìn)行了研究。并對某河流曝氣水質(zhì)進(jìn)行了改進(jìn)試驗(yàn),認(rèn)為微納米級曝氣是一種較好的改善水體水質(zhì)環(huán)境的技術(shù)。
新開發(fā)的微納米曝氣充氧設(shè)備是指比較其他微納米曝氣充氧設(shè)備的優(yōu)點(diǎn)??茖W(xué)研究新型微納米曝氣充氧設(shè)備的功能測試,獲得新型微納米曝氣充氧設(shè)備的性能參數(shù),并與市場上曝氣設(shè)備的技術(shù)指標(biāo)進(jìn)行比較。對新型微納米曝氣充氧設(shè)備的河段進(jìn)行模擬計算,獲得內(nèi)部河段的工作壓力、流速、相同的實(shí)際標(biāo)值變化,并分析其原因,為事后的改進(jìn)提供基本的理論支持點(diǎn)。模擬計算可以降低經(jīng)濟(jì)成本,節(jié)約原材料,穩(wěn)定性大。利用新型微納米曝氣充氧設(shè)備和曝氣盤曝氣設(shè)備,對水污染控制進(jìn)行實(shí)驗(yàn)科學(xué)研究,比較兩種設(shè)備對污染物的污泥負(fù)荷,分析水質(zhì)中細(xì)菌的變化。后,根據(jù)基本建設(shè)示范項(xiàng)目,分析示范項(xiàng)目中設(shè)備系統(tǒng)軟件的建設(shè)成本,比較其他水污染處理方法的成本,確保新型微納米曝氣充氧設(shè)備的優(yōu)勢。后對試驗(yàn)探究的效果進(jìn)行總結(jié)分析,對下一步的分析進(jìn)行展望。新型微納米曝氣設(shè)備與SBR系統(tǒng)軟件緊密結(jié)合仿真模擬解決水污染控制,不僅充分發(fā)揮微納米曝氣設(shè)備激光切割優(yōu)化和高溶解氧優(yōu)勢,還具有SBR系統(tǒng)軟件間歇曝氣降低運(yùn)行成本,實(shí)驗(yàn)效果,為曝氣設(shè)備的應(yīng)用和推廣提供基本理論支持。
微納米曝氣組成微生物菌種技術(shù)實(shí)施三年后,改善了水利樞紐的各項(xiàng)水質(zhì)指標(biāo),對碳、氮、磷的環(huán)境污染有很強(qiáng)的減少作用。水質(zhì)總磷遠(yuǎn)低于高錳酸鹽指數(shù),促進(jìn)了水氮/磷比的提高,有利于藍(lán)藻的減少。微納米曝氣融合微生物菌種強(qiáng)化技術(shù)有效應(yīng)用于恢復(fù)水利樞紐水體富營養(yǎng)化水質(zhì),本實(shí)驗(yàn)科學(xué)研究結(jié)果為水體富營養(yǎng)化水利樞紐水體改善提供參考。
采用微納米氣泡曝氣技術(shù)項(xiàng)目進(jìn)行藻類控制,項(xiàng)目分三期基本建設(shè),總曝氣面積14.5hm2。微納米技術(shù)工程噸污水處理費(fèi)用約為0.02元/m3,合理性優(yōu)良。圍隔實(shí)驗(yàn)期內(nèi),圍隔內(nèi)的溫度范圍為21.5。26.1。隔離試驗(yàn)結(jié)束時,三個微納米曝氣組的溶解氧濃度值在12.4mg/L左右,而空缺對照試驗(yàn)的溶解氧濃度值為8.7mg/L,與曝氣組誤差較大,達(dá)到3.7mg/L,顯示了微納米曝氣的實(shí)際充氧效果。曝氣組高錳酸鹽指數(shù)的大污泥負(fù)荷來自曝氣生物菌種組,達(dá)到50%,比立曝氣組高19.8%??偭缀涂扇芑盍α椎拇笪勰嘭?fù)荷來自曝氣+鎖磷劑組,各達(dá)70.3%和50%。曝氣生物菌種組對葉綠素A的大污泥負(fù)荷為70.2%,比立曝氣組增加33.5%,藻類總進(jìn)化率的大污泥負(fù)荷為78.9%,比立曝氣組增加13.9%,藍(lán)藻減少率為86.8%。
微納米曝氣組成微生物菌種技術(shù)改善水利樞紐水質(zhì)??茖W(xué)研究結(jié)果表明,在實(shí)施微納米曝氣的幾年內(nèi),曝氣區(qū)表面溶氧平均值為9.5mg/L,而非曝氣區(qū)為8.7mg/L。在底層水質(zhì)中,曝氣區(qū)平均值為8.8mg/L,非曝氣區(qū)平均值為7.8mg/Lo。2018年溶氧平均值為8.9mg/L,2019年升至9.6mg/L。水利樞紐pH值變化區(qū)域?yàn)?.04~8.61o,水質(zhì)清晰度從上下游水質(zhì)清晰度不到1m,再到曝氣區(qū)域?yàn)?m1.5m。2018年清晰度平均值為1m,2019年清晰度平均值提高到1.1m。水利樞紐上下游非曝氣區(qū)高錳酸鹽指數(shù)均為1.06mg/L;曝氣區(qū)二期和中下游高錳酸鹽指數(shù)均為0.92mg/L;2018年曝氣區(qū)一、三期高錳酸鹽指數(shù)均為0.88mg/Lo,2019年降至0.94mg/L。水利樞紐上下游非曝氣區(qū)總磷值為0.57mg/L,曝氣區(qū)二期和中下游總磷值為0.039mg/L;曝氣區(qū)一、三期總磷值為0.033mg/L。2018年總磷濃度值平均值為0.044mg/L,2019年總磷濃度值平均值降至0.042mg/Lo水利樞紐上下游非曝氣區(qū)可溶活力磷平均值為0.010mg/L;曝氣區(qū)二期和中下游可溶活力磷平均值為0.008mg/L;2018年曝氣區(qū)一、三期可溶活力磷平均值為0.007mg/L,2019年SRP平均值為0.008mg/L。水利樞紐上下游非曝氣區(qū)葉綠素a均值為8.27ugL;曝氣區(qū)二期和中下游葉綠素a均值為6.17ug/L;曝氣區(qū)一、三期葉綠素a均值為4.30ug/L。2018年葉綠素a總平均值為6.45ug/L,2019年總平均值降至6.04ug/L。曝氣區(qū)二期藻類總產(chǎn)量減少率為22.1%;曝氣區(qū)一、三期藻類總產(chǎn)量減少率為34.5%,春季藻類總產(chǎn)量減少率為27.1%;夏季藻類總產(chǎn)量減少率為31.9%;冬季藻類總產(chǎn)量減少率為25.9%。夏季藻類植物總產(chǎn)量較高,因此減少率也較高,其次是春季和冬季。藻類總產(chǎn)量的平均減少率為28.3%,藍(lán)藻的平均減少率為33.9%,藻類的平均減少率為34.4%,硅藻泥的平均減少率為18.7%o微納米曝氣成分。微生物菌種技術(shù)對不同類型的藻類有一定的減少作用。2018年藻類總進(jìn)化率平均為7.2x106cels/L,2019年藻類總進(jìn)化率平均降至7.1*106cels/L。
還原性強(qiáng)
微納米泡破裂后,由更高濃度的正離子氣-水分子聚集的機(jī)械能在一瞬間釋放出來,使H2O溶解形成具有強(qiáng)氧化性的羥基自由基(·0H)I3"]。Zhang等四在衰減系數(shù)全反射傅里葉變換紅外光譜技術(shù)(ATR-IR)的基礎(chǔ)上發(fā)現(xiàn),一旦破裂,高能的納米氣泡破裂,在水中生成大量的羥基自由基(2.07V),具有很強(qiáng)的氧化能力(2.07V),能夠氧化分解有機(jī)物,凈化處理水體。
(VI)的氧對流換熱。
隨著微納米泡直徑的減小,氣泡的比表面積繼續(xù)增大,界面張力促使內(nèi)部標(biāo)準(zhǔn)壓力不斷增大,使得大量的O2按照氣-水相界面融入水相培土壤。由于氣泡存在于水中的時間較長,氣體與藥液接觸的時間越長,而且氣泡堆積密度越大,促使氣體接觸液面的距離也隨之?dāng)U大,O2的使用率因此提升"I。