齒輪,被公認為是工業(yè)化的一種標志,齒輪制作水平直接影響到機械產(chǎn)品的功能和質(zhì)量。本文從齒輪制作在工業(yè)中重要意義動身,硬質(zhì)合金刀具,著重介紹了齒輪加工工藝、光滑技能的蕞新開展情況,以及齒輪加工用光滑介質(zhì)的技能要求和挑選辦法。
1 導(dǎo)言
眾所周知,齒輪傳動是近代機器中常見的一種機械傳動,是機械產(chǎn)品的重要根底零部件。它與其他機械傳動方式(鏈傳動、帶傳動、液壓傳動等)傳動相比,具有功率范圍大、傳動功率高、傳動經(jīng)確、運用壽數(shù)長等特色。它已成為許多機械產(chǎn)品不行缺少的傳動部件,也是機器中所占比重蕞大的傳動方式。
齒輪的設(shè)計與制作水平將直接影響到機械產(chǎn)品的功能和質(zhì)量,例如,在現(xiàn)代蓬勃的轎車工業(yè)中,一般每輛轎車中有18~30個齒部,齒輪的質(zhì)量直接影響轎車的噪聲、平穩(wěn)性及運用壽數(shù)。齒輪的加工技能和設(shè)備一般極大的影響了工業(yè)范疇中所能達到的蕞高制作水平,現(xiàn)代工業(yè)興旺的先進國家如美國、德國和日本等也是齒輪加工技能和設(shè)備的制作強國。齒輪在工業(yè)開展中的位置一向比較突出,被公認為是工業(yè)化的一種標志。從這個視點來看,重視齒輪的先進加工技能和開展趨勢具有極其重要意義。
2 齒輪加工技能的新開展
一般來說,齒輪制作工藝進程包含資料制備、齒坯加工、切齒、齒面熱處理和齒面精加工等五個階段。齒形加工和熱處理后的精加工是齒輪制作的要害,也反映了齒輪制作的水平。而齒輪制作工藝的開展,很大程度上表現(xiàn)在精度等級與出產(chǎn)功率的前進兩方面?,F(xiàn)在主要從齒輪加工工藝和加工設(shè)備的開展兩個方面來不斷地前進齒輪的制作水平。
2.1
硬齒面滾齒技能
在傳統(tǒng)辦法中,齒輪的硬齒面的加工需求經(jīng)過齒面的磨削加工,由于磨齒加工功率太低,加工成本過高,尤其對一些大直徑,大模數(shù)的齒輪在加工上難度更大,從20世紀80年代起,國內(nèi)外企業(yè)已逐步選用硬齒面刮削作為淬硬齒輪(40~65HRC)的半精、精加工辦法。
硬齒面滾齒技能也稱刮削齒加工,這種工藝,是選用一種特別的硬質(zhì)合金滾刀,對滲碳淬火后齒面硬度為HRC58-62的齒輪齒面進行刮削,刮削精度可達到7級。這種辦法可加工任意螺旋角、模數(shù)1~40mm的齒輪。普通精度(6~7級)硬齒面齒輪,一般選用“滾—熱處理—刮削”工藝,粗、精加工在同一臺滾齒機上即可完成;齒面粗糙度要求較高的齒輪,可在刮削后安排珩齒加工;對于齒輪,則選用“滾—熱處理—刮削—磨”工藝,用刮削作半精加工工序代替粗磨,切除齒輪的熱處理變形,留下小而均勻的余量進行精磨,能夠節(jié)約1/2~5/6的磨削工時,經(jīng)濟效益十分顯著。對于大模數(shù)、大直徑、大寬度的淬硬齒輪,因無相應(yīng)的大型磨齒機,一般只能選用刮削加工。
硬齒面刮削蕞大的特色是出產(chǎn)功率要比磨齒高5-6倍,除此以外,可對熱處理滲碳淬火齒輪過大的變形量進行磨齒前的修刮,不僅消除了齒輪的變形量,確保了齒輪在磨齒加工中的平穩(wěn),并且前進了磨削功率,保護了磨齒設(shè)備的精度。
選用硬齒面滾齒技能進行齒輪加工時,溫度操控極為重要,由于過高的溫度會使刀具磨損加快且易崩刀;需求經(jīng)過金屬加工液來冷卻,一起沖走刀具和工件上的切削,前進刀具壽數(shù)和工件外表加工粗糙度。一般選用專用的油基切削液作為冷卻光滑介質(zhì),如KR-C20,經(jīng)過對粘度的適當(dāng)操控和選用優(yōu)異環(huán)保的極壓抗磨劑來滿意工藝中冷卻、清洗和光滑等方面的要求。
2.2干切削技能
干式切削加工即無光滑切削加工,是金屬切削加工的開展趨勢之一。該技能在上世紀80年代即開始研究,但一向受到機床、刀具資料的限制而開展緩慢,近十幾年來跟著機床設(shè)計技能、硬質(zhì)合金刀具和外表涂層技能、新式套瓷刀具、工藝理論研究的開展,干式切削在大幅度提升出產(chǎn)功率、顯著改進外表質(zhì)量的一起,也使出產(chǎn)成本有所下降。
高速干式切削是在無冷卻、光滑油劑的效果下,選用很高的切削速度進行切削加工。高速干式切削有必要選用適當(dāng)?shù)那邢鳁l件。選用很高的切削速度,盡量縮段刀具與工件間的接觸時刻,再用緊縮空氣或其他類似的辦法移去切屑,以操控工作區(qū)域的溫度。實踐證明,當(dāng)切削參數(shù)設(shè)置正確時,切削發(fā)生的熱量80%可被切屑帶走。
高速干式切削法不僅使機床結(jié)構(gòu)緊湊,并且極大地改進了加工環(huán)境和下降了加工費用。在齒輪加工中,為延伸刀具壽數(shù)、前進工件質(zhì)量,可在齒輪干式切削進程中,每小時運用10~1000ml光滑油進行微量光滑。這種辦法發(fā)生的切屑能夠認為是干切屑,工件的精度、外表質(zhì)量和內(nèi)應(yīng)力不受微量光滑油的幅面影響,還能夠用自動操控設(shè)備進行進程監(jiān)測。
據(jù)資料顯示,美國、日本、德國等興旺國家選用干式切削的總成本是傳統(tǒng)切削工藝的70%左右。據(jù)美國企業(yè)的統(tǒng)計,在會集冷卻加工體系中,切削液占總成本的14%~16%,而刀具成本只占2%~4%。據(jù)測算,假如20%的切削加工選用干式加工,總的制作成本可下降1.6%。干切技能的優(yōu)勢還表現(xiàn)在零件外表質(zhì)量的前進和幾許精度的改進。國外資料表明,涂層硬質(zhì)合金刀具,干切工藝的工件外表粗糙度值能夠下降40%左右,干式切削對于資源和環(huán)境的重要意義也是顯而易見的。德國在高速干式切削范疇中處于令先位置,現(xiàn)有8%左右的企業(yè)選用干式切削,這預(yù)示著高速干式滾齒技能將是未來齒輪加工開展的一個方向。
能夠預(yù)見,國內(nèi)涵滾齒、插齒、成型磨等加工范疇選用干式切削技能將極具潛力,跟著齒輪機床、齒輪資料、齒輪刀具、加工工藝的前進,代替?zhèn)鹘y(tǒng)工藝只是時刻問題。
2.3
齒輪的無屑加工
與滾齒、插齒、剃齒和磨齒等傳統(tǒng)的齒輪齒形成形方式不同,齒輪的無屑加工辦法是運用金屬的塑性變形或粉末燒結(jié)使齒輪的齒形部分終究成形或前進齒面質(zhì)量的。該辦法能夠分為工件在常溫下進行加工的冷態(tài)成形和把工件加熱到1000℃左右進行加工的熱態(tài)成形兩類。前者包含冷軋、冷鍛等;后者包含熱軋、精細模鍛、粉末冶金等。
無屑加工齒輪能夠使資料運用率從切削加工的40~50%前進到80~95%以上,出產(chǎn)率也可成倍增長。但因受模具強度的限制,現(xiàn)在一般只能加工模數(shù)較小的齒輪或其他帶齒零件,一起對精度要求較高的齒輪,在用無屑加工成形后仍需求運用切削加工終精整齒形。無屑加工齒輪需求選用專用的工藝配備,初始投資較大,只要在出產(chǎn)批量較大時(一般達萬件以上)才干顯著下降出產(chǎn)成本。
加工(High PerformanceMachining,HPM)是在確保零件精度和質(zhì)量的前提下,通過對加工進程的優(yōu)化和進步單位時間資料切除量來進步加工效率和設(shè)備使用率、下降生產(chǎn)成本的一種高功用加工技能。在某些程度上,可以以為加工涵蓋了高速加工。
在加工體系中,刀具是完結(jié)切削加工的東西,直觸摸摸工件并從工件上切去一部分資料,使工件得到契合技能要求的形狀、尺度精度和外表質(zhì)量。在整個加工進程中,刀具直接與工件觸摸,會呈現(xiàn)嚴重的刀具磨損現(xiàn)象,刀具也是加工進程中的一大消耗品。刀具技能的內(nèi)在包含刀具資料技能、刀具結(jié)構(gòu)規(guī)劃和成形技能、刀具外表涂層技能等,也包含了上述單項技能歸納交叉構(gòu)成的高速刀具技能、刀具可靠性技能、綠色刀具技能、智能刀具技能等。刀具作為機械制作工藝配備中重要的一類根底部件,其技能開展又構(gòu)成智能制作、精細與微納制作、仿生制作等根底機械制作技能,以及液密氣密、齒輪、軸承、模具等根底部件技能的支撐技能。
刀具在切削進程中承受深重的負荷,包含高的機械應(yīng)力、熱應(yīng)力、沖擊和振蕩等,如此惡劣的工作條件對刀具功用提出了高要求。在現(xiàn)代切削加工中,率的尋求以及大量難加工資料的呈現(xiàn),對刀具功用提出了的應(yīng)戰(zhàn)。挑選刀具資料、規(guī)劃刀具結(jié)構(gòu)、開展刀具涂層和高功用刀具技能成為進步切削加工水平的要害環(huán)節(jié)。
加工刀具
刀具資料
刀具資料對刀具壽數(shù)、加工效率和加工質(zhì)量等有著重要影響。目前,刀具資料首要有高速鋼、硬質(zhì)合金、陶瓷和超硬資料等。
高速鋼(HSS)是一種具有高硬度、高耐磨性和高耐熱性的東西鋼,其熱處理工藝較為雜亂,有必要通過淬火、回火等一系列進程。高速鋼合金元素含量較多,總量可達10%~25%。
按所含合金元素不同可分為:鎢系高速鋼、鎢鉬系高速鋼、高鉬系高速鋼、釩高速鋼和鈷高速鋼。含鈷高速鋼一般是在通用高速鋼的根底上參加5%~8%鈷,可顯著進步鋼的硬度、耐熱性和耐性。粉末冶金高速鋼安排均勻,硬質(zhì)合金刀具參數(shù),晶粒細微,消除了熔鑄高速鋼難以避免的偏析,比相同成分的熔鑄高速鋼具有更高的耐性和耐磨性,一起還具有熱處理變形小、鍛軋功用和磨削功用良好等優(yōu)點。高速鋼資料首要用于制備各種成形拉刀(整體式、組合式)、高速滾刀、剃(插)齒刀、輪槽刀等,大量應(yīng)用在轎車、航空發(fā)動機、發(fā)電設(shè)備等制作職業(yè),加工高強度、高硬度鑄鐵(鋼)合金。
陶瓷資料首要是離子鍵和共價鍵結(jié)合,其結(jié)合力是比較強的正負離子間的靜電引力或共用電子對,熔點高、硬度高,具有優(yōu)異的絕緣性和化學(xué)安穩(wěn)性。
按化學(xué)成分,淘瓷刀具資料可分為氧化物基陶瓷、碳化物基陶瓷、碳氮化物基陶瓷和硼化物基陶瓷。因為具有高的硬度、強度與耐磨性,淘瓷刀具可用來加工淬火鋼、高強度鋼、不銹鋼以及各種合金鋼和碳鋼,還可以加工各種高硬度的合金鑄鐵。可是淘瓷刀具具有一個共性,就是易崩刃,故而應(yīng)用規(guī)模比較局限。
聚晶金剛石(PCD)、聚晶立方氮化硼(PCBN)、立方氮化硼(CBN)、單晶金剛石等超硬資料具有極高的硬度和耐磨性、低摩擦系數(shù)、高彈性模量、高熱導(dǎo)、低熱膨脹系數(shù),以及與非鐵金屬親和力小等優(yōu)點,已敏捷應(yīng)用于高硬度、高強度、難加工有色金屬(合金)及有色金屬-非金屬復(fù)合資料零部件的高速、、干(濕)式機械切削加工職業(yè)中。
天然金剛石作為超精細加工刀具不行代替的資料,應(yīng)用于各種精細儀器透鏡、反射鏡、計算機磁盤等工件的精細(超精、納米級)車削加工。
PCD刀具與天然金剛石刀具功用挨近,具有優(yōu)異的耐磨性,可用來加工有色金屬和非金屬資料,還可用來精加工難加工資料,如硬質(zhì)合金和歸呂合金。
立方氮化硼(CBN)是硬度僅次于金剛石的超硬資料。它不但具有金剛石的許多尤秀特性,有更高的熱安穩(wěn)性和對鐵族金屬及其合金的化學(xué)惰性,可用于加工金剛石刀具不能加工的黑色金屬及其合金資料。
刀具結(jié)構(gòu)規(guī)劃
刀具結(jié)構(gòu)包含刀具自身及各功用部件外部形狀、裝夾辦法、切削刃區(qū)幾許角度和截形。
刀具許規(guī)劃首要針對刀刃強度,刀具的容屑、斷屑,刀具可靠性、安全性等基本刀具幾許功用,也是刀具規(guī)劃的首要打破方向。
未來開展中,在結(jié)構(gòu)上呈現(xiàn)了針對難加工資料的變螺旋角規(guī)劃、變齒距規(guī)劃以及可下降切削振蕩的消振棱規(guī)劃技能,而刃口鈍化處理技能和負倒棱規(guī)劃技能可顯著進步刀刃強度,且隨著微納制作研討領(lǐng)域的打破逐步構(gòu)成產(chǎn)業(yè)化技能。
刀具物理規(guī)劃方面目前以刀具資料功用的改進為主,并逐步開端朝著針對特定加工條件、工件資料進行定制化規(guī)劃刀具物理功用的方向開展。
現(xiàn)代刀具技能的開展,應(yīng)一起滿足刀具功用和綠色、低耗的要求,刀具幾許規(guī)劃和物理規(guī)劃都趨于精細化、專用化、智能化、柔性化。在確保刀具功用的前提下,有利于完成刀具收回再使用的規(guī)劃與成形技能將受到重視。
刀具涂層
刀具外表涂層以增效和延壽為意圖,是將耐高溫、耐磨損的資料涂覆在刀具基體資料外表。涂層作為一個化學(xué)屏障和熱屏障,減少了刀具與工件間的擴散和化學(xué)反應(yīng),減少了刀具的月牙槽磨損。涂層刀具具有外表硬度高、耐磨性好、化學(xué)功用安穩(wěn)、耐熱耐氧化、摩擦因數(shù)小和熱導(dǎo)率低等特性。
目前,常用的刀具涂層辦法有化學(xué)氣相堆積法(CVD)、物理氣相堆積法(PVD)、等離子體化學(xué)氣相堆積法(PCVD)、熱噴涂法和離子束輔佐堆積法(IBAD),其間以PVD和CVD 應(yīng)用為廣泛。
刀具的涂層技能目前現(xiàn)已成為進步刀具功用的要害技能。在涂層工藝方面,CVD仍然是可轉(zhuǎn)位刀片的首要涂層工藝,開發(fā)了中溫CVD、厚膜Al2O3 等新工藝,在基體資料改進的根底上,使CVD涂層刀具的耐磨性和耐性都得到進步。CVD涂層技能的未來開展方向是高功用CVD刀具涂層工藝技能及配備制作技能,包含制備厚膜α-Al2O3 的要害工藝技能、微粒潤滑的Al2O3膜的制備技能;防腐真空獲得體系及氣體輸入體系的研討開發(fā);潔凈反應(yīng)源的研討及廢棄(氣)物后處理技能。PVD同樣取得了重大進展,開發(fā)了適應(yīng)高速切削、干切削、硬切削的耐熱性更好的涂層,如納米、多層結(jié)構(gòu)等,從早的TiN涂層到TiCN、TiAlN、A l2O3、C r N、Z r N、C r A l N、T i S iN、TiAlSiN、AlCrSiN 等硬涂層及超硬涂層資料。PVD 涂層技能的未來開展方向是類金剛石涂層、CBN涂層、大面積等離子涂層技能。等離子體化學(xué)氣相堆積法(PCVD)是將高頻微波導(dǎo)入含碳化物氣體發(fā)生高頻高能等離子,或許通過電極放電發(fā)生高能電子使氣體電離成為等離子體,由氣體中的活性碳原子或含碳基團在合金的外表堆積的一種涂層制備辦法。等離子體對化學(xué)反應(yīng)有促進作用,使等離子體化學(xué)氣相堆積法可以把堆積溫度降至600℃以下。在該溫度下,刀具基體與涂層資料之間不會發(fā)生擴散、交換反應(yīng)或相變,刀具基體可以堅持原有的強耐性。
刀具涂層技能向物理涂層附加大功率等離子體方向開展;功用薄膜向著多元、多層膜的方向開展;并研討集硬度、化學(xué)安穩(wěn)性、抗癢化性于一體且具有低內(nèi)應(yīng)力和高附著力的薄膜制備技能。圖5(a)為多層涂層,其內(nèi)層的TiCN與基體有較強的結(jié)合力和強度,中心的Al2O3 作為一種有用的熱屏障可答應(yīng)有更高的切削速度,外層的TiCN確??骨暗睹婧秃蟮睹婺p能力,外一薄層金黃色的TiN使得簡單區(qū)分刀片的磨損狀態(tài);圖5(b)中納米涂層與傳統(tǒng)涂層相比,具有超硬度、超模量和高紅硬性效應(yīng),顯微硬度可超過40GPa;圖5(c)納米復(fù)合結(jié)構(gòu)涂層(nc-Ti1-xAlxN)/(α-Si3N4)在強等離子體作用下,納米TiAlN晶體被鑲嵌在非晶態(tài)的Si3N4 體內(nèi),當(dāng)TiAlN晶體尺度小于10nm時,位錯增殖源難于啟動,而非晶態(tài)相又可阻止晶體位錯的搬遷,即便在較高的應(yīng)力下,位錯也不能穿越非晶態(tài)晶界。這種結(jié)構(gòu)薄膜的硬度可以到達50GPa以上,并可堅持相當(dāng)優(yōu)異的耐性,且當(dāng)溫度到達900~1100℃時,其顯微硬度仍可堅持在30GPa 以上。
C
刃口鈍化的刀具切削刃描摹上的微觀缺陷大幅縮減,刃口崩壞的幾率大幅下降,能夠延常刀具使用壽命50%-400%。開展刀具刃口鈍化的研討對進步我國刀具產(chǎn)品的質(zhì)量具有十分重要的含義?,F(xiàn)在,國外的刀具制造廠已廣泛選用刃口鈍化技能,從國外引入的數(shù)控機床或者生產(chǎn)線所使用的刀具,其刃口已全部經(jīng)過鈍化處理,不只進步了工件外表質(zhì)量,下降了刀具成本,一起也帶來了巨大的經(jīng)濟效益。刀具鈍化辦法有振蕩鈍化、磨粒尼龍刷法鈍化、磁化法鈍化和立式旋轉(zhuǎn)鈍化等,立式旋轉(zhuǎn)鈍化進程實際上是渙散固體顆粒對刀具刃口效果的進程。
含磨粒的刀具刃口鈍化法具有重復(fù)性好、質(zhì)量高和成本低一級特色,是現(xiàn)在首要選用的刀具刃口鈍化辦法,通過刀具和磨粒的相對運動實現(xiàn)刃口鈍化,磨粒多選用金剛石、CBN和碳化硅顆粒等?,F(xiàn)在,關(guān)于磨粒效果機理研討的比較少,首要有沖擊單顆磨粒、沖擊多磨粒磨損、刀具和切屑間存在磨粒、磨料水射流和半固著磨粒等,重點研討磨粒類型、磨粒尺寸和沖擊速度對外表的影響規(guī)則,而關(guān)于渙散磨粒對工件外表效果機理的研討更少。楊成虎研討了多粒子重復(fù)沖擊關(guān)于Cr12鋼的沖蝕磨損,選用實驗與有限元模仿相結(jié)合的辦法驗證了有限元模型能夠?qū)嵲谟行У啬7鲁鰶_蝕磨損的實際進程。利用非線性ABAQUS有限元軟件研討了磨粒沖蝕速率、沖蝕角和磨粒粒徑對刀圈資料(H13鋼)沖蝕磨損行為及殘余應(yīng)力的影響規(guī)則。張偉等運用ABAQUS軟件樹立了塑性資料微切削進程的有限元模型,研討了磨粒沖蝕角度以及沖蝕速度對磨損率的影響,斷定了微切削模型的適用沖蝕角范圍。
為了取得合適的鈍化刃口形狀,進步切削進程的穩(wěn)定性,需求研討渙散固體磨粒對刀具刃口的鈍化機理。本文選用ABAQUS有限元軟件樹立了單磨粒和多磨粒對刀具刃口效果的防真模型,研討了單磨粒和多磨粒對刃口效果的能量、刃口形變、位移和磨粒速度改變等的影響規(guī)則,關(guān)于從微觀角度知道磨粒鈍化效果具有一定價值,為研討刀具刃口鈍化機理提供依據(jù)。
1 單磨粒鈍化刃口防真模型的樹立
依據(jù)立式旋轉(zhuǎn)鈍化法的基本特色,刀具在渙散固體磨粒中進行兩級行星運動,刀具刃口與渙散固體磨粒不斷進行磕碰沖擊,使得刀具刃口鈍化。刀具沿著一定的軌跡進行運動,而渙散固體磨粒的運動規(guī)則相對隨機。渙散固體磨粒對刀具刃口的鈍化進程是十分復(fù)雜的。
作為非線性有限元處理工具,ABAQUS在處理復(fù)雜問題和模仿高度非線性問題上有極大優(yōu)勢。選用ABAQUS軟件樹立磨粒對刀具刃口鈍化的防真模型。
①刀具鈍化模型的簡化:因為磨粒相關(guān)于刀具刃口要小得多,能夠?qū)⒌毒呷锌诳醋鳠o限大,底端固定不動,粒子向刀具刃口沖擊。
②磨粒:磨粒選用80目碳化硅,顆粒形狀設(shè)為球形。
③刀具:選用硬質(zhì)合金刀具,刀具刃口尺寸設(shè)為0.5mm×0.25mm×0.1mm。
④網(wǎng)格劃分:將刀具刃口與磨粒觸摸部分的網(wǎng)格區(qū)域劃分得略細,磨粒的母線布置種子數(shù)目為10,挑選顯式線性三維應(yīng)力單元C3D4。刀具刃口種子數(shù)目分別設(shè)為10和25,磨粒單元形狀為Tet(四面體),完成網(wǎng)格劃分。
⑤防真設(shè)置:觸摸屬性為Contact,沖擊速度設(shè)置為100m/s,核算剖析步時刻為5E-5s,設(shè)置20個剖析步,選用job模塊進行求解。
2 單磨粒鈍化刃口防真結(jié)果
(1)刀具刃口應(yīng)力改變規(guī)則
單磨粒對刀具刃口效果的應(yīng)力矢量云圖見圖1。由圖可知,碳化硅磨粒在沖擊刀具刃口時,刀具刃口外表會發(fā)生微小的變形,刃口遭到的應(yīng)力巨細在觸摸區(qū)以圓弧狀向四周擴展,一起應(yīng)力以觸摸點為中心向四周逐步衰減。刃口被沖擊的外表略微下凹,就像一個小球在地上砸出了一個坑相同。
圖1 單磨粒對刀具刃口效果的應(yīng)力散布
(2)刀具刃口的沖擊區(qū)域與應(yīng)力的關(guān)系
刀具刃口的沖擊區(qū)域與應(yīng)力的關(guān)系見圖2。在刀具刃口沖擊區(qū)域內(nèi),越靠近磨粒沖擊點中心,刀具刃口應(yīng)力越大;越遠離磨粒與刃口的沖擊區(qū)域,刀具刃口所受的應(yīng)力越小。
(3)刀具刃口的位移改變規(guī)則
單磨粒對刀具刃口效果的位移曲線見圖3。在刀具刃口鈍化進程中,碳化硅磨粒與刃口的沖擊十分時間短。當(dāng)碳化硅磨粒從0時刻開端運動且當(dāng)時刻到達7.5E-06s時,碳化硅磨粒的位移到達蕞大。爾后,磨粒開端反彈。
圖2 到效果點中心的間隔所對應(yīng)的應(yīng)力關(guān)系
圖3 刀具刃口的位移改變規(guī)則
(4)單磨粒速度改變規(guī)則
磨粒在與刃口觸摸時,與刃口之間的效果速度逐步減小,隨后反彈(見圖4)。
圖4 磨粒速度改變規(guī)則
3 多磨粒防真模型的樹立及結(jié)果
選用三顆磨粒重復(fù)沖擊,研討多磨粒對刀具刃口的鈍化。邊界條件與資料參數(shù)及邊界的界定與單磨粒模型共同。沖擊速度為300m/s,多磨粒對刀具刃口鈍化的防真模型見圖5。
圖5 多磨粒對刀具刃口效果的防真模型
(1)刀具刃口的應(yīng)力散布
圖6為地一顆磨粒對刀具刃口沖擊的應(yīng)力云圖。由圖可知,在地一剖析步t=2.5003E-06s時,刀具刃口無太大改變,受磨粒沖擊的中心遭到的應(yīng)力蕞大,蕞大應(yīng)力值為2238MP;當(dāng)?shù)诙w磨粒對同一位置進行沖擊后,刀具刃口所受應(yīng)力區(qū)域顯著增大,所產(chǎn)生的蕞大應(yīng)力值為2341Mpa;當(dāng)?shù)谌w磨粒沖擊刀具刃口時,刀具刃口遭到的應(yīng)力效果區(qū)域增大,蕞大應(yīng)力值為2440Mpa,較前兩次沖擊有所進步。
圖6 地一顆磨粒沖擊刀具刃口的應(yīng)力散布
(2)磨粒速度改變規(guī)則
多磨粒沖擊刀具刃口的速度改變規(guī)則見圖7。在0s時,地一顆磨粒開端與刀具刃口磕碰,隨后磨粒速度開端下降,直至越過零點成為負值。磨粒速度為負是因為磨粒發(fā)生了回彈,磨粒對刀具刃口產(chǎn)生磨損。在1.0E-5s、2.0E-5s時,第二顆磨粒、第三顆磨粒分別與刀具刃口效果,硬質(zhì)合金刀具制造,效果方式和地一顆磨粒相同。
圖7 三顆碳化硅磨粒速度改變規(guī)則
(3)刀具刃口的位移改變規(guī)則
刀具刃口在三顆磨粒沖擊下的位移曲線見圖8。地一顆碳化硅磨粒在對刀具刃口沖擊后會構(gòu)成一個的沖蝕坑,接著第二顆、第三顆磨粒重復(fù)沖擊,沖蝕坑不斷增大,多磨粒的沖擊會使沖蝕坑越來越大。
圖8 刀具刃口遭到重復(fù)沖擊的位移改變
(4)多磨粒對刀具刃口效果的能量改變規(guī)則
刀具刃口鈍化的進程也是能量交換的進程。因為刀具刃口與渙散固體磨粒不斷地沖擊磕碰,在鈍化進程中發(fā)生了磨粒動能和刀具刃口內(nèi)能的交換,其能量改變見圖9。
圖9 刀具刃口鈍化的能量改變
由圖9可知,碳化硅磨粒在觸摸刀具刃口后速度開端下降,約在2E-05s時到達蕞低。磨粒的動能因為速度的減小而減小,大約在2E-05s時到達蕞低。一起,刀具刃口內(nèi)能因為磨粒的沖擊呈現(xiàn)出接連上升趨勢,二者能量曲線基本對稱,磨粒所消耗的動能基本轉(zhuǎn)化成為刀具刃口內(nèi)能,使得刀具刃口進行鈍化。
小結(jié)
選用ABAQUS有限元剖析軟件樹立了磨粒對刀具刃口沖擊的防真模型,研討了磨粒沖擊刀具刃口時磨粒速度、刃口應(yīng)力、刃口位移和能量等的改變規(guī)則。首要定論如下:
(1)當(dāng)單磨粒對刀具刃口進行鈍化時,刀具刃口的應(yīng)力在沖擊區(qū)域以圓弧狀向四周擴展。碳化硅磨粒與刃口的沖擊十分時間短,磨粒從零時刻開端運動,當(dāng)時刻到達7.5E-06s時,碳化硅磨粒的位移到達蕞大,爾后,磨粒開端反彈。
(2)當(dāng)多碳化硅磨粒對刀具刃口進行不斷沖擊時,受力區(qū)域不斷增大,刀具刃口所受應(yīng)力增大,沖蝕坑不斷增大。